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Abstract 
Functional profiles of microbial communities are typically generated using 

comprehensive metagenomic or metatranscriptomic sequence read searches, which are time-

consuming, prone to spurious mapping, and often limited to community-level quantification. We 

developed HUMAnN2, a tiered search strategy that enables fast, accurate, and species-resolved 

functional profiling of host-associated and environmental communities. HUMAnN2 identifies a 

community’s known species, aligns reads to their pangenomes, performs translated search on 

unclassified reads, and finally quantifies gene families and pathways. Relative to pure translated 

search, HUMAnN2 is faster and produces more accurate gene family profiles. We applied 

HUMAnN2 to study clinal variation in marine metabolism, ecological contribution patterns 

among human microbiome pathways, variation in species’ genomic versus transcriptional 

contributions, and strain profiling. Further, we introduce “contributional diversity” to explain 

patterns of ecological assembly across different microbial community types. 

Introduction 

Profiling microbial community function from metagenomic and metatranscriptomic 

(“meta’omic”) sequencing data is a critically important challenge in microbial ecology. It has the 

potential to characterize the extensive biochemical ‘dark matter’ observed in many 

communities1, as well as to link specific molecular activities to environmental2 and health-

associated3 phenotypes. In contrast with taxonomic profiling, functional profiling aims to 

quantify the gene and metabolic pathway content contributed by known and uncharacterized 

community members4. While taxonomic profiling can be performed on a maximally informative 

subset of meta’omic sequencing reads5,6, comprehensive functional profiling must consider all 
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reads and the vast space of genes from which they might derive, thus adding considerable 

analytical complexity. 

Several methods exist for functional profiling of metagenomes7–9, a subset of which have 

been applied to metatranscriptomes10–13. These include HUMAnN14, which we developed 

during the Human Microbiome Project (HMP)15 for host-associated and environmentally 

associated meta’omic functional profiling. Like later methods, HUMAnN interprets translated 

search of  meta’omic  sequenc- ing reads to reconstruct metabolic functions. Although existing 

methods benefit from recent advances in translated search16–18, they remain considerably slower 

than nucleotide-level analyses. Additionally, while some functional profiling methods 

incorporate taxonomic concepts for database refinement7 or targeted quantification9, most are 

limited to reporting community-level abundances rather than per-organism contributions. 

Similarly, functional profiling lags behind efforts in strain-level analysis of microbial com- 

munities19–21, despite a growing appreciation for strain-specific functions within species. 

We developed HUMAnN2 to integrate taxonomic information with functional profiles 

and to limit the translated search bottleneck by incorporating a tiered approach with nucleotide-

level search, accelerated translated search, and pathway reconstruction components. HUMAnN2 

exceeds the accuracy and performance of pure translated search strategies. Moreover, gene and 

pathway abundances quantified by HUMAnN2 are automatically stratified into contributions 

from known and uncharacterized species. This provides previously inaccessible detail in 

interpreting host-associated and environmental community meta’omes.  
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Results 

Algorithm Overview 

HUMAnN2 implements a “tiered search” strategy to quickly and accurately profile the 

functional content of a meta’ome at species-level resolution (Fig. 1a, Supplementary Fig. 1, 

Methods), the results of which can also be used for strain profiling. In the first tier, HUMAnN2 

rapidly identifies known microbial species in a sample by screening DNA or RNA reads with 

MetaPhlAn2 (ref. 22). HUMAnN2 then constructs a sample-specific database by merging 

preconstructed, functionally annotated pangenomes of the identified species23. In the second tier, 

HUMAnN2 performs nucleotide-level mapping of all sample reads against the sample’s 

pangenome database. Relative to comprehensive translated search, nucleotide-level mapping 

against relevant pangenomes quickly explains a large fraction of reads with fewer opportunities 

for spurious alignment. In the third and final tier, reads that do not align to identified species’ 

pangenomes are subjected to accelerated translated search against a comprehensive protein 

database (by default, UniRef90 or UniRef50 (ref. 24)). 

The tiered search generates mappings of meta’omic reads to gene sequences with known 

or ambiguous taxonomy. These mappings are weighted by quality and sequence length to 

estimate per-organism and community-total gene family abundance, which can be regrouped to 

other functional systems (for example, COGs25, KOs26, Pfam domains27, and GO terms28). 

Finally, gene families annotated to metabolic enzymes are further analyzed to reconstruct and 

quantify complete metabolic pathways (by default, MetaCyc29) in the community and per 

organism.  
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Tiered Search Outperforms Pure Translated Search 

We assessed HUMAnN2’s accuracy by profiling synthetic metagenomes (Methods). We 

first simulated a human gut metagenome containing 10 million 100-nucleotide (nt) DNA reads (1 

Gnt) drawn from the 20 most abundant bacterial species in HMP stool samples15. Species’ 

abundances were geometrically staggered from ~0.1× to ~70× genomic coverage (Fig. 1b) and 

included nine members of genus Bacteroides—both challenges for accurate per-species 

profiling. We analyzed this synthetic metagenome using HUMAnN2’s tiered search and a pure 

translated search strategy (Supplementary Note 1 and Supplementary Fig. 2; parallel analysis of 

a 100-member, non-human-associated community). 

For community-level gene family (UniRef90) abundances, the sensitivity, precision, and 

overall accuracy (1 – Bray–Curtis dissimilarity) of HUMAnN2’s tiered search were 86, 90, and 

89%, respectively (Fig. 1c). Thus, HUMAnN2 (i) detected most expected gene families in the 

community, (ii) reported only a small proportion of spuriously detected families, and (iii) 

correctly assigned the vast majority of reads to their source families. Gene families profiled by 

pure translated search were less accurate (overall accuracy 67%), due in part to the greater 

potential for spurious alignment when aligning all sample reads against a comprehensive protein 

database. 

The per-species accuracy of HUMAnN2’s tiered search remained high for the 14 species 

present at 1× genomic coverage or greater, including the nine Bacteroides species. Below 1× 

coverage, sensitivity and overall accuracy dropped off with coverage, as greater numbers of gene 

families were undersampled in that domain. However, precision remained consistently high for 

low-coverage species, indicating that their pangenomes did not recruit substantial unrelated 

reads. The small subset of reads (1.4%) that passed into the translated search tier and mapped to 
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proteins produced an ‘unclas- sified’ stratification with a minority contribution to overall error 

(Supplementary Note 2). 

Accuracy trends for HUMAnN2’s tiered search were similar at the pathway level, with 

pathway precision generally exceeding gene family precision (Fig. 1d). This is due to the greater 

difficulty of spuriously matching a complete pathway, which requires multiple distinct reactions 

(gene families) to spuriously recruit reads. Simultaneously, HUMAnN2’s requirement of 

detecting complete (or nearly complete) pathways causes sensitivity and overall accuracy to 

decay more rapidly with decreasing coverage. For less well-characterized samples, gene-level 

error inherent to the pure translated search strategy tended to be “smoothed out” during pathway 

quantification, though pathway profiles from pure translated search were still less accurate than 

those from HUMAnN2’s tiered search (87% versus 98%). 

HUMAnN2’s tiered search was also 3× faster than pure translated search in the synthetic 

evaluation (runtime <1 h; Fig. 1e and Supplementary Notes 1 and 3). We further benchmarked 

the performance of tiered search on 397 HMP metagenomes spanning six body sites 

(Supplementary Note 4). In a typical sample, ~60% of reads mapped during the pangenome 

search, and an additional ~20% mapped during translated search (Supplementary Fig. 3). Thus, 

for well-characterized, real-world metagenomes, HUMAnN2 explains the majority of sample 

reads during the fast pangenome search, making it considerably more efficient than a pure 

translated search strategy. 

Comparison with Existing Methods 

We compared HUMAnN2 with existing functional profiling methods built upon pure 

translated search: HUMAnN1 (ref. 14), COGNIZER10, MEGAN12, and ShotMAP13 (Fig. 1e). 

This comparison was based on estimation of community-level clusters of orthologous groups 
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(COGs) abundances, an output format common to all methods (Methods). We constructed a 

custom search database for ShotMAP based on UniRef90 and used the other three methods’ 

recommended databases. We note that these three methods may differ in their systems of COG 

definition relative to our UniProt-based gold standard, which could influence their accuracy 

relative to HUMAnN2 and ShotMAP. However, the isolate genomes sampled in these 

evaluations predate all methods except HUMAnN1, which limits potential bias due to database 

coverage. 

Overall accuracy was highest for HUMAnN2’s tiered search (97%), followed by 

HUMAnN2’s pure translated search (83%), ShotMAP (72%), HUMAnN1 (59%), MEGAN 

(56%), and COGNIZER (43%). The increased accuracy of HUMAnN2’s pure translated search 

may be attributed to our post hoc alignment filtering and weighting aimed at maximizing 

specificity (Methods; Supplementary Figs. 4 and 5). HUMAnN2’s tiered search profiled the 10-

million-read synthetic metagenome in 45 min. This was similar to HUMAnN1 using accelerated 

translated search16 (42 min), yet HUMAnN2 provides considerably more detailed output and 

considers an ~20× larger sequence space. HUMAnN2 was >3× faster than all other methods. 

Performance on Metatranscriptomes and Nonreference Species 

We performed extensive additional evaluations of HUMAnN2. HUMAnN2 remains 

accurate and efficient when profiling broadly defined gene families (UniRef50; Supplementary 

Note 3) or a synthetic gut metatranscriptome (Supplementary Note 5 and Supplementary Fig. 6). 

Critically, HUMAnN2 performed ably on metagenomes containing new isolates of known 

species as well as novel species (with the latter profiled by the translated search tier). This was 

accomplished by profiling a complex (100-member) synthetic community while holding out 

fractions of HUMAnN2’s pangenome database to simulate novel species (Supplementary Note 1 
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and Supplementary Fig. 2) and by applying HUMAnN2 and other methods to communities of 

isolate genomes that post-date the methods’ databases (Supplementary Note 6 and 

Supplementary Figs. 7–10). 

We additionally compared HUMAnN2 with metagenomic assembly of synthetic 

metagenomes (Supplementary Note 7). This evaluation expands previous comparisons of 

assembly and reference-based approaches on real-world human metagenomes30, which produced 

very similar rankings of domain-level functional diversity. While assembly was advantageous for 

uncovering novel sequence diversity in deeply sequenced human metagenomes, HUMAnN2 

identified more known domains in metagenomes with modest sequencing depths. This advantage 

follows from the known challenge of detecting low-coverage metagenomic sequences by 

assembly31, which was also observed in our synthetic evaluations. 

Contributional Diversity of Core Human Microbiome Pathways 

HUMAnN2’s tiered search quantifies community-encoded functions and stratifies their 

abundances according to who performs them. These data can be explored in greater detail by 

applying traditional within-sample (alpha) and between-sample (beta) community diversity 

measures32 to species’ contributions to a specific function, defined here as the function’s 

“contributional diversity” (Methods). A function contributed by a single species has low within-

sample (“simple”) contributional diversity, while a function with many equal contributors has 

high within-sample (“complex”) contributional diversity. If a function is contributed by the same 

assemblage of species across samples, it has low between-sample (“conserved”) contributional 

diversity, whereas a function contributed by different assemblages has high between-sample 

(“variable”) contributional diversity. 
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We explored the contributional diversity of human microbiome pathways that were core 

to a body site (nonzero in>75% of individuals) and largely explained by known species (<25% 

unclassified in >75% of individuals) among the 397 HMP metagenomes introduced above. (Note 

that functions with extensive “unclassified” abundance could be contributed by one or many 

different species within and across samples, hence their exclusion from this analysis.) Within- 

and between-sample contributional diversities were intuitively bounded above by their 

community-level analogs (Fig. 2a and Supplementary Fig. 11; examples in Fig. 2b–e). 

Contributional diversity rivals community diversity for functions that are broadly distributed in a 

given ecology. For example, phosphopantothenate biosynthesis in the gut had complex, variable 

contributors across subjects (mirroring gut ecology; Fig. 2b). Conversely, human microbiomes 

often contained pathways contributed by the same dominant organism across subjects, resulting 

in low within- and between-sample contributional diversity (Supplementary Fig. 12). For 

example, glutaryl-CoA biosynthesis in the gut was contributed principally by Faecalibacterium 

prausnitzii (Fig. 2e). 

Oral sites were the most enriched for pathways with high within-subject but low 

between-subject contributional diversities, suggesting that they were encoded by complex yet 

similar mixtures of species across individuals (Fig. 2c). Core pathways at the vaginal site 

exhibited low within-sample but high between-sample contributional diversity, consistent with 

vaginal ecologies dominated by single, differing Lactobacillus species among subjects33 (Fig. 

2d). That said, a subset of core pathways in non-vaginal sites also exhibited the same “simple but 

variable” contributions, which is further evidence for potential discordance between per-function 

and community-level diversities (Supplementary Fig. 13).  
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Clinal Variation in Marine Microbial Community Function 

To demonstrate HUMAnN2’s applicability to environmental microbial communities, we 

applied the tiered search to quantify KEGG Orthogroup (KO) abundance in a dataset of 45 

marine metagenomes from the epipelagic and mesopelagic zones of the Red Sea (Fig. 3 and 

Supplementary Note 4). We identified a number of high-variance KOs that were not detected in a 

previous analysis of the same samples with HUMAnN1 (ref. 34; examples in Fig. 3a–e). Notably, 

KOs detected by both HUMAnN1 and HUMAnN2 were in the majority, and their abundances 

were well correlated between the two methods (Fig. 3f). 

Variation in KO abundance was often associated with sample temperature, the primary 

predictor of genetic diversity in the marine water column34,35. Many high-variance KOs were 

maximally abundant in deep and cool waters and sharply less abundant at warmer temperatures. 

Three such KOs, among the six most variable overall, were implicated in fatty acid biosynthesis, 

particularly in archaea (Fig. 3a–c). Indeed, HUMAnN2’s taxonomic stratifications revealed that 

the community abundances of these KOs were dominated by contributions from a single-cell 

genome36 of Marine Group I Thaumarchaeota (47–89% of copies). 

Conversely, D-glycerate 3-kinase was more abundant in warmer, surface waters (Fig. 3d) 

and was largely attributed to Prochlorococcus marinus (25%) and Candidatus Pelagibacter 

ubique (21%), the two most abundant bacterial species in the surface ocean. These two species 

may use this enzyme to salvage glycerate in different aspects of central carbon metabolism 

(Prochlorococcus in photorespira- tion and Candidatus Pelagibacter as an entry point to 

glycolysis). 

Cob(I)alamin adenosyltransferase was notable for being enriched at low and high depths 

and depleted at intermediate depths (Fig. 3e). Cobalamin is a required cofactor for ribonucleotide 
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reductase in certain marine bacteria, including Prochlorococcus37. Indeed, Prochlorococcus was 

the enzyme’s dominant contributor in surface samples (71–96%), whereas Verrucomicrobia was 

dominant in the deepest samples (36–41%). 

Profiling Strain-Level Functional Variation 

HUMAnN2’s accurate gene presence and absence calls (Fig. 1c) can be applied to track 

strain-level20 functional variation in well-covered community species (Supplementary Note 4). 

While HUMAnN2 cannot assign new functions to a species, it identifies (potentially novel) 

subspecies-level clades from metagenomes based on the presence and absence of functions 

observed across the species’ sequenced isolate genomes. For example, HUMAnN2’s gene family 

profiles of the HMP metagenomes introduced above revealed putative subspecies-level clades of 

Lactobacillus jensenii and Eubacterium eligens in the posterior fornix and gut, respectively 

(Supplementary Fig. 14). 

Critically, HUMAnN2’s strain profiles provide a means of explaining subspecies-level 

functional variation based on enrichments in ‘variable’ gene families20. For example, strain-

variable genes in HMP species were intuitively enriched for mobile-element processes such as 

DNA-mediated transposition (Wilcoxon enrichment test; FDR-corrected q < 0.2 in 42 species) 

and DNA integration (q < 0.2 in 105 species). In some cases, gene presence or absence was 

strongly correlated with body site, indicative of possible niche-adapted subspecies. For example, 

Haemophilus haemolyticus strains from tongue metagenomes were enriched for genes involved 

in outer cell membrane assembly relative to plaque and buccal strains (q = 0.03; Supplementary 

Fig. 15).  
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Analyzing Paired Metatranscriptomes and Metagenomes 

HUMAnN2 can profile paired metagenomes (DNA reads) and metatranscriptomes 

(RNAreads) to compare and contrast microbial community functional potential and activity4, as 

well as their respective contributional diversities. To illustrate this, we profiled core pathways (as 

defined above) from 78 paired meta’omes from the Inflammatory Bowel Disease Multi’omics 

Database (IBDMDB)38 (Supplementary Note 4). Within-sample contributional diversity at the 

DNA and RNA levels were well correlated across 181 pathways, suggesting that more diverse 

pathway encoding tends to result in more diverse transcription (Spearman’s r = 0.91; Fig. 4a). 

Simultaneously, DNA diversity tended to exceed RNA diversity, suggesting that pathways are 

not proportionally transcribed by the community species that encode them. Sucrose degradation 

was one such striking example: while encoded by many species, the pathway’s transcript pool 

was dominated by F. prausnitzii (Fig. 4b). 

To differentiate changes in community gene expression from changes in gene copy 

number, it is critical to normalize functions’ RNA abundances against their DNA abundances. 

For example, within these profiles of the IBD gut, 71% of pathways’ RNA abundances fell 

within an order of magnitude of their DNA abundances. Methanogenesis pathways were among 

the largest outliers, with RNA/DNA ratios indicative of strong expression39. HUMAnN2’s 

stratified profiles confirmed Methanobrevibacter smithii as a consistent, dominant contributor to 

these pathways, resulting in low within- and between-subject contributional diversity. 

Discussion 

HUMAnN2 introduces a novel tiered search algorithm that provides highly accurate 

profiles for characterized members of microbial communities, with fallback to translated search 
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for uncharacterized members. These tiers operate jointly in far less time than traditional pure 

translated search. Moreover, tiered search provides taxonomic stratification of microbial 

functions at the species level, thus quantifying the community abundance of functions while 

assigning them to specific contributors. The utility of tiered search will only improve as 

reference catalogs continue to expand. Additionally, tiered search facilitates this expansion by 

identifying unclassified meta’omic sequencing reads for external assembly of novel genes. 

HUMAnN2’s functional stratifications led us to introduce contributional diversity as an 

analog of community-level diversity, enabling new analyses of microbial functions. Community-

level function is often more conserved than community composition15,39–41, consistent with a 

functional repertoire “defining” a niche and satisfied by different microbial assemblages. 

Contributional diversity adds another means by which this feature of functional ecology may be 

understood1, in that, while some functions do appear to be distributed evenly across community 

members, others are more restricted. Similarly, modern multi’omic analyses of microbial 

communities distinguish between community functional potential (encoding by genomes) and 

function activity (gene or protein expression)39,42,43. Contributional diversity reveals another 

way in which these measurements can differ—for example, broadly encoded functions that are 

expressed dominantly by one or a few species. 

Functional meta-analysis44 of diverse meta’omic profiles are among the areas opened up 

by the HUMAnN2 methodology, with the potential to reveal (i) novel microbial community 

biochemistry and signaling, (ii) these functions’ source species and contributional diversity 

patterns, and (iii) species-resolved deviations between functional potential and activity. In the 

human microbiome, HUMAnN2 provides the opportunity to generate testable hypotheses 

regarding specific species-level (or strain-level) functions associated with health-related 
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differences in community-level function. To support these future discoveries, the method is 

implemented as open source, fully documented software, packaged with demonstration data and 

training materials, and supports an active user community, accessible via 

http://huttenhower.sph.harvard. edu/humann2. 

Online Methods 

These methods detail the HUMAnN2 algorithm, the construction of its databases, our 

evaluations on synthetic metagenomes, and contributional diversity calculations. Methods related 

to our HUMAnN2 applications (the analyses of HMP metagenomes, Red Sea metagenomes, and 

paired IBDMDB meta’omes) are provided in Supplementary Note 4. Methods related to our 

evaluations on synthetic metatranscriptomes, novel isolate genomes, and assembled 

metagenomes are provided in Supplementary Notes 5, 6, and 7, respectively. Methods details can 

also be found in the Nature Research Reporting Summary. 

Algorithm Overview 

HUMAnN2 is a system for accelerated functional profiling of shotgun metagenomic and 

metatranscriptomic (meta’omic) sequencing from host- associated and environmentally 

associated microbial communities. HUMAnN2 implements a tiered search strategy comprising 

three search phases (tiers). In the first search tier, the meta’omic sample is rapidly screened to 

identify known species in the underlying community. This information is then used to construct a 

custom gene sequence database for the sample by concatenating precomputed, functionally 

annotated pangenomes of detected species. In the second search tier, the entire sample is aligned 

against this database, yielding (i) per-species, per-gene alignment statistics and (ii) a collection 

of unmapped reads. In the final search tier, unmapped reads are aligned against a user-specified 
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(typically comprehensive and nonredundant) protein database by translated search, yielding (i) 

taxonomically unclassified per-gene alignment statistics and (ii) a collection of novel reads. Per-

gene alignment statistics are weighted based on alignment quality, coverage, and sequence length 

to yield gene abundance values (i) for the community and (ii) stratified according to per-species 

and “unclassified” contributions. Gene abundance values are finally applied to metabolic 

network reconstruction to identify and quantify pathways in the community (also stratified 

according to per-species and 'unclassified' contributions). These processes, including the 

underlying databases and search parameters, are expanded in detail below. 

Gene and Pathway Reference Data as Fixed Inputs to HUMAnN2 

Comprehensive protein databases 

HUMAnN2 uses UniRef90 and UniRef50 (ref. 24) as comprehensive, nonredundant 

protein sequence databases. Briefly, UniRef90 represents a clustering of all nonredundant 

protein sequences in UniProt45, such that each sequence in a cluster aligns with 90% identity and 

80% coverage of the longest sequence in the cluster (the cluster seed). Each resulting cluster is 

represented by a single sequence (usually the best-annotated member of the cluster, which is not 

necessarily the seed). UniRef50 is constructed by clustering all UniRef90 representative 

sequences to make clusters aligning with 50% amino acid sequence identity and 80% coverage 

of the cluster seeds. We use UniRef90 and UniRef50 clusters (i) as a basis for describing gene 

family structure in microbial genomes and (ii) as a comprehensive database for translated 

meta’omic search (see below). Protein annotations used by HUMAnN2 (for example, Enzyme 

Commission (EC) number, COG25, KO26, Pfam domain27, and GO term28 assignments) are 

inferred from the annotations of representative UniProt sequences. 
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ChocoPhlAn pangenomes 

Nucleotide-level search in HUMAnN2 is performed using collections of species 

pangenomes. We refer to this collection in HUMAnN2 as “ChocoPhlAn.” (An earlier version of 

ChocoPhlAn was published as MetaRef46; the version of ChocoPhlAn incorporated in 

HUMAnN2 is identical to that underlying MetaPhlAn2 and its marker database22.) A species’ 

pangenome is a nonredundant representation of the species’ protein-coding potential. To 

construct a pangenome for a given species, we download all available isolate genomes for that 

species from NCBI GenBank, and/or RefSeq, along with associated coding sequence (CDS) 

annotations. Each isolate genome is analyzed with PhyloPhlAn47 to confirm correct taxonomic 

placement. Using UCLUST48, we then cluster all CDSs from high-quality isolate genomes of a 

given species at 97% nucleotide identity. One representative (centroid) sequence from each 

cluster is saved. These centroid sequences constitute the species’ pangenome. These steps were 

conducted in the course of MetaPhlAn2 development. 

To use ChocoPhlAn for functional profiling, we annotated each pangenome centroid 

sequence to UniRef90 and UniRef50 by (i) translating the centroid to produce an amino acid 

sequence and then (ii) performing protein-level search against UniRef90. If the centroid’s best 

hit in UniRef90 met the criteria for inclusion in the corresponding UniRef90 cluster (>90% 

amino acid identity and >80% coverage), then the centroid was annotated to the UniRef90 

cluster and inherited its corresponding UniRef50 annotation. If not, the centroid was labeled as 

“UniRef90_unknown,” and a similar search was carried out against UniRef50 (requiring >50% 

identity to a UniRef50 sequence). If this search also failed, then the centroid was labeled as 

“UniRef50_unknown.” ChocoPhlAn includes pangenomes for >4,000 cellular microbes 
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(bacteria, archaea, and fungi), which include >18 million gene clusters. HUMAnN2 v0.9.6 adds 

support for >3,000 viral pangenomes, which include >100,000 gene clusters. 

Associating UniRef90/50 gene families with MetaCyc reactions 

All alignments generated by HUMAnN2 are collapsed to UniRef90 or UniRef50 gene 

families, which constitute the method’s most highly resolved main output. Gene families must be 

further collapsed to enzyme/reaction abundances before metabolic pathway reconstruction. This 

required generating a map linking UniRef90 and UniRef50 identifiers to MetaCyc reactions. 

These links were established in two ways. First, MetaCyc reactions are associated with a subset 

of proteins in UniProt, which are identified by UniProt accession numbers (ACs). As each 

protein in UniProt is associated with a UniRef90 cluster (and, by extension, a UniRef50 cluster), 

Reaction-AC associations were converted to Reaction-UniRef90 and Reaction-UniRef50 

associations for use in HUMAnN2. Second, MetaCyc reactions are associated with entries in the 

Enzyme Commission (EC) catalog, a four-level hierarchical description of enzymatic activities. 

UniProt entries (and, by extension, UniRef entries) are also associated with EC numbers. This 

relationship enabled additional transitive association of MetaCyc reactions and UniRef90/50 

identifiers using EC annotations as a bridge. To maintain specificity, only EC annotations of the 

highest level of specificity were used in this process (for example, a UniRef90 entry associated 

with EC 1.1.1 would not be linked to a MetaCyc RXN associated with EC 1.1.1.1, nor would the 

reverse mapping be allowed). MetaCyc RXNs with at least one UniRef90 (or UniRef50) 

association are said to be 'quantifiable' in HUMAnN2.  
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MetaCyc reaction to pathway mapping 

HUMAnN1 (ref. 14) incorporated KEGG’s structured pathway syntax26 to improve the 

accuracy of pathway reconstruction and quantification. This syntax specifies (i) the reactions that 

must be satisfied to complete a pathway, as well as (ii) possible alternative paths through the 

pathway (satisfiable by different combinations of reactions). We generated a corresponding 

structure for MetaCyc pathways by parsing MetaCyc’s pathway definition files. More 

specifically, each pathway was resolved to a directed acyclic graph connecting initial reactants 

with final products. (MetaCyc’s 'superpathways' were resolved to their respective subpathways 

and recursive paths were removed.) 

Each reaction node in a pathway was annotated to describe whether it connects with other 

nodes via AND or OR relationships (indicating, for example, that reactions 1 and 2 are both 

required to convert A to B, or that either 1 or 2 can perform the conversion). A pathway is said to 

be satisfied when there exists a path from initial reactants to final products that only passes 

through reaction nodes that were detected (nonzero abundance) in a given meta’omic sample 

(see below). Pathways were excluded (i) if they contained less than four quantifiable reactions 

(reactions associated with level 4 EC numbers, which are in turn associated with UniRef90 and 

UniRef50 families) or (ii) if they included >10% unquantifiable reactions (unquantifiable 

reactions in otherwise acceptable pathways were flagged as “optional” in the structured pathway 

syntax). 

Quantifying Gene Families by Tiered Search 

Taxonomic prescreen 

HUMAnN2 takes as input a quality-controlled (including host-read-depleted) meta’ome 

provided as a FASTA or FASTQ file (with optional GZIP compression). DNA/ RNA reads are 
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initially screened using MetaPhlAn2 with default parameters (the resulting MetaPhlAn2 outputs 

are saved as temp output in HUMAnN2). Microbial species detected by MetaPhlAn2 above a 

target relative abundance threshold are passed to the next search tier (pangenome search). A 

lenient detection threshold of 0.0001 (0.01%) relative abundance is used as a default, which is 

equivalent to 0.1× fold coverage of a 5-Mbp microbial genome in a 10-Gnt metagenome in 

which 50% of reads map to sequenced isolate genomes. 

Pangenome search 

HUMAnN2 next concatenates the pangenomes of species detected in the prescreen as a 

single FASTA file, which it then provides as input for building a Bowtie 2 index49. All sample 

reads (as introduced above) are then profiled against this index using Bowtie 2 in “very 

sensitive” mode. Because HUMAnN2 is aligning to isolated coding sequences, it does not 

consider read end- pairing relationships when evaluating Bowtie 2 alignment quality. 

Translated search 

Reads that failed to align against the pangenome database are mapped by translated 

search against a user-specified protein database. Four options are available: full versions of 

UniRef90 and UniRef50, and reduced versions of UniRef90 and UniRef50 containing only 

proteins associated with a MetaCyc reaction (discussed further in Supplementary Note 3). 

HUMAnN2 can call three translated search binaries to complete this task: DIAMOND16, 

RAPSearch2 (ref. 17), and USEARCH48. DIAMOND is the recommended default. HUMAnN2 

tunes the parameters of the translated search depending on whether the user is mapping against 

UniRef90 clusters versus the broader (more inclusive) UniRef50 clusters. For example, when 

using DIAMOND for translated search against UniRef50, the “–sensitive” search flag is invoked. 
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The final output of the translated search is a tabular report of read-versus-protein alignment 

statistics (tabular BLAST format). 

Alignment post-processing 

Alignments in HUMAnN2 are post-processed to account for mapping quality and 

database sequence length. If a read has two or more high-quality alignments to distinct database 

sequences, the read’s single count is divided across the corresponding sequences in proportion to 

squared alignment identity. This serves as a more generic version of the default alignment 

weighting procedure implemented in HUMAnN1, which was based on alignment E value (a 

statistic that lacks strict equivalents in some alignment software, for example, Bowtie 2). 

Notably, a variety of similar weighting schemes were found to be equivalently good during 

HUMAnN1 evaluation, and all markedly better than naive best-hit mapping14. 

A weighted count to a sequence is further normalized by the alignable length of the 

database sequence (in kilobases) to produce a count in reads per kilobase (RPK) units. 

(Alignable length is the total length of the database sequence minus the aligned length of the read 

plus 1: the number of positions where an equivalent alignment to the database sequence could 

have begun.) These procedures are applied to nucleotide-level alignments against ChocoPhlAn 

pangenomes and to translated alignments against UniRef90/UniRef50. Weighted hits to 

sequences in the ChocoPhlAn pangenomes are summed within species according to UniRef90/ 

UniRef50 annotations (or UniRef90_unknown/UniRef50_unknown if no annotation exists). 

Weighted direct hits to UniRef90/UniRef50 families during translated search are summed and 

assigned to an “unclassified” species bin. These gene family abundances, along with a 

community total abundance (all species totals plus “unclassified”), are reported as HUMAnN2’s 

stratified gene family abundance table. 
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HUMAnN2’s translated search uses a comprehensive (rather than sample- specific) 

sequence database, which results in more opportunities for spurious alignments to occur. To 

compensate for this, HUMAnN2 filters translated alignment results in two additional ways 

before applying the general weighting procedures outlined above. First, we say that a read is 

“well aligned” to a protein if the majority of the read is used in the alignment (tunable default: 

90% query coverage). This forces translated alignment of reads to more closely resemble the non-

local alignment modes of Bowtie 2 (as used in pangenome search). Next, a read’s weight is only 

distributed over proteins whose sequences were “well covered” by well-aligned reads (tunable 

default: 50% of positions covered). Without such a filter, it is possible for small, frequently 

occurring peptide motifs to spuriously recruit compatible reads across a wide range of database 

proteins (most of which are not present in the underlying community; Supplementary Fig. 5). 

Reads that were never “well aligned” or which only aligned to poorly covered proteins are 

exported alongside unaligned reads for downstream analyses (for example, assembly of novel 

gene sequences) external to HUMAnN2. 

Quantifying Pathway Abundance and Coverage 

Using the UniRef50/UniRef90 to MetaCyc reaction mapping described above, a 

reaction’s abundance is computed as the sum of the abundances for all gene families that map to 

the reaction. These sums are computed for each species, the “unclassified” stratum, and the 

community as a whole, consistent with HUMAnN2’s gene-level abundance reporting. 

HUMAnN2’s procedures for computing pathway abundance (copy number) and coverage 

(detection confidence) are computed largely as described and benchmarked in HUMAnN1 

(ref. 14), with modifications added to account for (i) the move from KEGG- to MetaCyc-based 

pathway definitions and (ii) the need to compute the values in a stratified (per-species) manner as 
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well as community-wide. Starting from a set of reaction abundances, HUMAnN2 first performs 

an (optional) gap-filling step to account for conspicuously depleted reactions or under-

annotation. The default gap-filling in HUMAnN2 replaces the least-abundant reaction in the 

pathway with the abundance of the next-least-abundant reaction. Optional reactions are not 

considered in the gap-filling computations. Next, MinPath50 is applied to identify a parsimonious 

set of pathways to explain the observed reactions. Abundance and coverage are then computed 

for each pathway following HUMAnN1’s methods for structured (default) or unstructured 

pathway definitions. For structured pathways, abundance is computed as the harmonic mean of 

reaction abundances (after optimizing over alternative subpathways and optional reactions); for 

unstructured pathways, abundance is computed as the average of the top 50% most abundant 

reactions in the pathway. Coverage is calculated similarly after converting reaction abundances 

to measures of reaction detection confidence. These procedures are carried out for the reactions 

detected in each species, “unclassified” reaction abundance values, and community total 

abundance values. 

Evaluation Details 

Simulating metagenomes 

We defined synthetic metagenome “templates” consisting of lists of species and target 

relative abundance values. For each species in a template, we selected a random isolate genome 

of that species from among those represented in ChocoPhlAn. We induced 3% artificial 

nucleotide sequence mutations in the isolate genomes to approximate the properties of previously 

unseen isolate genomes of the same species; genomic loci and nucleotide states were sampled 

randomly during the mutation process. Next, we randomly pulled 5 million 250-nucleotide 

fragments (substrings) from among those genomes. To guarantee that genome copies in the 
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synthetic metagenome followed the target relative abundance distribution, fragments were pulled 

from each genome with probability proportional to the product of the genome’s size and 

corresponding species’ target relative abundance. We converted each fragment to a pair of 100-

nucleotide sequencing reads in FASTQ format using ART51 with its Illumina HiSeq 2500 error 

model (resulting in 10 million total synthetic reads or 1 Gnt). 

We produced a gene family abundance gold standard by incrementing the abundance of 

each gene family found in a genome by the product of the genome’s coverage (in reads per 

kilobase (RPK) units) and the gene family’s copy number. Note that this procedure does not 

account for random per-gene variation in fragment sampling, which will thus contribute to 

deviations from the gold standard (and be more marked for low-coverage species). This issue is 

discussed further in Supplementary Note 1. Gold standards for other functional categories (for 

example, COGs) were generated by regrouping (summing) the gene family gold standard 

according to gene family functional annotations in UniProt. Gold standards for pathway 

coverage and abundance were generated by providing the gene family gold standard as an input 

file for HUMAnN2. Thus, our pathway-level accuracy assessment measures the influence of 

gene-level error on pathway quantification and not the accuracy of assigning pathways to isolate 

genomes based on their annotated genes. 

Comparing expected and observed profiles 

We compared expected and observed gene and pathway abundance profiles at the 

community level as well as for each contributing species. Comparisons were made after sum-

normalizing expected and observed profiles to relative abundance units. Four statistics were used 

for comparison: sensitivity, the fraction of expected features that were detected by HUMAnN2 

(with “detected” defined as nonzero measured abundance); precision, the fraction of features 
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detected by HUMAnN2 that were in the expected (gold standard) profile; overall accuracy, the 

fraction of feature abundance that was shared between the expected and observed datasets (1 - 

Bray–Curtis dissimilarity); and error mass, the proportion of total absolute error between the 

observed and expected profiles attributable to a particular stratification (individual species or 

“unclassified”). 

Comparing HUMAnN2 with other methods 

We profiled the 20-species, synthetic human gut metagenome with HUMAnN2, 

HUMAnN1 (ref. 14), COGNIZER10, ShotMAP13, and MEGAN12 to generate profiles of COG 

abundance. HUMAnN2 was run in the default (tiered) mode and also in pure translated search 

mode against the full UniRef90 protein database. The resulting UniRef90 abundance profiles 

were converted to COG abundance profiles using the “humann2_regroup_ table” script with the 

UniRef90-to-eggNOG option (which is inclusive of COGs). 

To analyze the synthetic gut metagenome with HUMAnN1 (updated to use DIAMOND16 

for translated search), we constructed a database from HUMAnN1’s default protein sequence 

collection: the last public release of KEGG (v56)26. We then aligned the synthetic reads against 

this database using HUMAnN1’s recommended search parameters (top-20 hits with E value 

< 1.0) while invoking DIAMOND’s “sensitive” mode. The resulting tabular alignment output 

was provided as input to HUMAnN1. HUMAnN1’s default KEGG Orthogroup (KO) output was 

converted to COG abundance using a KO-to-COG mapping derived from KEGG v56 

(“data/cogc” in the HUMAnN1 installation). 

We analyzed the synthetic metagenome in COGNIZER using the “-p 4” option, which 

defines a workflow in which RAPSearch2 (ref. 17) profiles the metagenome against a reduced 

(non-redundant) COG sequence collection. This workflow was selected to be maximally time-



24 

efficient based on evaluations from the COGNIZER publication10. COGNIZER directly output a 

COG abundance table for downstream analysis. 

We created a custom COG database for ShotMAP by supplying “build_ 

shotmap_searchdb.pl” with individual FASTA files containing all UniRef90 sequences annotated 

to each COG. We used the option “–searchdb-split-size 30000” to split the database into subsets 

to improve memory efficiency. We then ran ShotMAP with the option “–class-score 31.3”, 

which sets the minimum bit score for an alignment to be included in a family. 

A DAA file was created for MEGAN by running DIAMOND to align the synthetic 

metagenome against the full NCBI NR database (downloaded 2 November 2016). Using the 

MEGAN GUI, the DAA file was “meganized” to COG abundance based on MEGAN’s included 

EggNOG mapping file (June 2016 version). Using the MEGAN GUI EggNOG viewer, we 

exported COG abundances to a text file for downstream analysis. 

All runs were carried out in Google Cloud instances of machine type n1-standard-8 

(which have 8 cores and 30 GB of memory). To benchmark the runs we captured the elapsed 

time and the maximum RSS (resident set size) memory for the main process and all of its 

subprocesses, including all subprocesses in the process tree that have the main process as the top-

most parent. These values were captured and recorded with the “humann2_benchmark” script. 

For workflows with separate mapping and post-processing steps (HUMAnN1 and MEGAN), 

elapsed time values encapsulate both steps, while maximum RSS values reflect the maximum 

across the two steps. Community-level COG abundances were sum-normalized and compared to 

the synthetic gold standard using the statistics described above.  
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Contributional Diversity 

We calculated contributional diversity for functions by applying traditional ecological 

similarity measures to the functions’ stratified abundance values. Here, the stratified values were 

renormalized after excluding “unclassified” abundance before computing diversity statistics. 

Functions with a non-trivial proportion of “unclassified” (>25%) in a non-trivial fraction of 

samples (>25%) were completely excluded from analysis. We used Gini–Simpson alpha 

diversity to measure within-sample contributional diversity of a function. This measure can be 

interpreted as the probability of selecting two “copies” of a function derived from different 

species and varies from 0 (single contributor) to 1 (infinite contributors). We used Bray–Curtis 

beta diversity to measure between-subject contributional diversity of a function. This measure 

can be interpreted as the fraction of shared contributions between two samples and varies from 0 

(identical contributions) to 1 (no contributors in common). Diversity values for a pathway 

computed over samples (or sample pairs) were summarized by averaging. 

Code Availability 

HUMAnN2 is a Python2/3 compatible package. The latest version can be installed via 

pip or HomeBrew (or installed from source via http://huttenhower.sph.harvard.edu/humann2). 

HUMAnN2 is also bundled as part of the bioBakery virtual machine, which is available as a 

Vagrant Box, a Google Cloud image, and an Amazon Web Services AMI (via 

http://huttenhower.sph. harvard.edu/biobakery). An archive of HUMAnN2 version 0.11.0 of the 

software (used in the evaluations reported here) is bundled with the publication. 

The HUMAnN2 package includes 223 unit and functional tests, which run in ~20 min to 

verify successful installation and operation. Once installed, the complete HUMAnN2 workflow 

can be run with a single command by providing (i) an input meta’omic sequencing dataset 

http://huttenhower.sph.harvard.edu/humann2)
http://huttenhower.sph/
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(fasta/fastq format) and (ii) output folder. Four protein databases are available for use with 

HUMAnN2 (UniRef50 full, UniRef90 full, UniRef50 EC-filtered, UniRef90 EC-filtered). These 

databases, along with ChocoPhlAn and a collection of useful “utility” mapping files, are 

downloaded independently of the HUMAnN2 installation using the included 

“humann2_databases” script. Alternatively, the user can build and run HUMAnN2 with their own 

custom databases. 

HUMAnN2 features four “bypass” modes to allow the user to tailor his or her workflow, 

for example, including/excluding tiers in the tiered search. A “resume” feature allows the user to 

bypass compute-intensive sections of the workflow that have already completed while fine-

tuning downstream analyses. HUMAnN2 includes 43 command-line arguments to customize 

runs for a user’s compute environment and to allow for parameter tuning (though a typical user 

will only interact with the two required “input” and “output” parameters). HUMAnN2 

is bundled with a (growing) library of support scripts to facilitate downstream analyses, such as 

merging and normalizing profiles, regrouping default gene family abundances to other functional 

categories, combining RNA and DNA profiles to generate “relative expression” measurements, 

inferring approximate taxonomic assignment for proteins in the “unclassified” stratum, 

generating strain profiles, and plotting stratified abundances. These and other topics are 

expanded in detail in HUMAnN2’s user manual: 

http://huttenhower.sph.harvard.edu/humann2/manual. 

Data Availability 

The Human Microbiome Project (HMP) metagenomes analyzed in this work are 

available via http://hmpdacc.org. The IBDMDB metagenomes and metatranscriptomes analyzed 

http://huttenhower.sph.harvard.edu/
http://hmpdacc.org/
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in this work are available via http://ibdmdb.org. The Red Sea metagenomes analyzed in this 

work were previously deposited as NCBI BioProject PRJNA289734. The synthetic 

metagenomes and metatranscriptomes used in the evaluation of HUMAnN2 and other methods 

are available from the authors and at http://huttenhower.sph.harvard.edu/humann2. 

Acknowledgments 

The authors thank M. Wong, T. Sharpton, and the members of the HUMAnN user group 

for their feedback on the development and evaluation of HUMAnN2. Funding for this work was 

provided by NSF 1565100 (to J.G.C.); People Programme (Marie Curie Actions) of the 

European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant 

agreement PCIG13-GA-2013-618833 and by MIUR “Futuro in Ricerca” RBFR13EWWI_001 

(to N.S.); NIH NIDDK U54DE023798, NSF MCB-1453942, NIH NIDDK P30DK043351; and 

NSF DBI-1053486 (to C.H.). 

References 

1. Shafquat, A., Joice, R., Simmons, S. L. & Huttenhower, C. Functional and phylogenetic 

assembly of microbial communities in the human microbiome. Trends Microbiol. 22, 261–

266 (2014). 

2. Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 

193–199 (2009). 

3. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome 

Med. 8, 51 (2016). 

4. Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial 

community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015). 

http://ibdmdb.org/
http://huttenhower.sph.harvard.edu/humann2


28 

5. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific 

marker genes. Nat. Methods 9, 811–814 (2012). 

6. Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic marker 

genes. Nat. Methods 10, 1196–1199 (2013). 

7. Silva, G. G., Green, K. T., Dutilh, B. E. & Edwards, R. A. SUPER-FOCUS: a tool for agile 

functional analysis of shotgun metagenomic data. Bioinformatics 32, 354–361 (2016). 

8. Sharma, A. K., Gupta, A., Kumar, S., Dhakan, D.  B. & Sharma, V.  K. Woods:  A fast and 

accurate functional annotator and classifier of genomic and metagenomic sequences. 

Genomics 106, 1–6 (2015). 

9. Petrenko, P., Lobb, B., Kurtz, D. A., Neufeld, J. D. & Doxey, A. C. MetAnnotate: function-

specific taxonomic profiling and comparison of metagenomes. BMC Biol. 13, 92 (2015). 

10. Bose, T., Haque, M. M., Reddy, C. & Mande, S. S. COGNIZER: A framework for 

functional annotation of metagenomic datasets. PLoS One 10, e0142102 (2015). 

11. Kim, J., Kim, M. S., Koh, A. Y., Xie, Y. & Zhan, X. FMAP: functional mapping and 

analysis pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics 

17, 420 (2016). 

12. Huson, D. H. et al. MEGAN Community Edition—interactive exploration and analysis of 

large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016). 

13. Nayfach, S. et al. Automated and accurate estimation of gene family abundance from 

shotgun metagenomes. PLoS Comput. Biol. 11, e1004573 (2015). 

14. Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to 

the human microbiome. PLoS Comput. Biol. 8, e1002358 (2012).  



29 

15. Human Microbiome Project Consortium. Structure, function and diversity of the healthy 

human microbiome. Nature 486, 207–214 (2012). 

16. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using Diamond. 

Nat. Methods 12, 59–60 (2015). 

17. Zhao, Y., Tang, H. & Ye, Y. RAPSearch2: a fast and memory-efficient protein similarity 

search tool for next-generation sequencing data. Bioinformatics 28, 125–126 (2012). 

18. Hauswedell, H., Singer, J. & Reinert, K. Lambda: the local aligner for massive biological 

data. Bioinformatics 30, i349–i355 (2014). 

19. Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level 

population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638 

(2017). 

20. Scholz, M. et al. Strain-level microbial epidemiology and population genomics from shotgun 

metagenomics. Nat. Methods 13, 435–438 (2016). 

21. Luo, C. et al. ConStrains identifies microbial strains in metagenomic datasets. Nat. 

Biotechnol. 33, 1045–1052 (2015). 

22. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. 

Methods 12, 902–903 (2015). 

23. Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-

genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005). 

24. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: A 

comprehensive and scalable alternative for improving sequence similarity searches. 

Bioinformatics 31, 926–932 (2015).  



30 

25. Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome 

coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 

43, D261–D269 (2015). 

26. Kanehisa, M., Sato, Y.,  Kawashima, M., Furumichi, M. & Tanabe,  M. KEGG as a 

reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 

(2016). 

27. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. 

Nucleic Acids Res. 44, D279–D285 (2016). 

28. Gene Ontology Consortium. Gene Ontology Consortium: going forward Nucleic Acids Res. 

43, D1049–D1056 (2015). 

29. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc 

collection of pathway/genome databases. Nucleic Acids Res. 44, D471–D480 (2016). 

30. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome 

Project. Nature 550, 61–66 (2017). 

31. Sczyrba, A. et al. Critical assessment of metagenome interpretation—a benchmark of 

metagenomics software. Nat. Methods 14, 1063–1071 (2017). 

32. Hamady, M. & Knight, R. Microbial community profiling for human microbiome projects: 

tools, techniques, and challenges. Genome Res. 19, 1141–1152 (2009). 

33. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 

108, 4680–4687 (2011). 

34. Thompson, L. R. et al. Metagenomic covariation along densely sampled environmental 

gradients in the Red Sea. ISME J. 11, 138–151 (2017).  



31 

35. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 

1261359 (2015). 

36. Swan, B. K. et al. Genomic and metabolic diversity of Marine Group I Thaumarchaeota in 

the mesopelagic of two subtropical gyres. PLoS One 9, e95380 (2014). 

37. Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of 

cyanobacterial host carbon metabolism. Proc. Natl. Acad. Sci. USA 108, E757–E764 (2011). 

38. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human 

Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of 

human health and disease. Cell Host Microbe 16, 276–289 (2014). 

39. Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. 

Proc. Natl. Acad.Sci. USA 111, E2329–E2338 (2014). 

40. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 

(2009). 

41. Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community 

assembly based on functional genes rather than species. Proc. Natl. Acad. Sci. USA 108, 

14288–14293 (2011). 

42. Duran-Pinedo, A. E. et al. Community-wide transcriptome of the oral microbiome in 

subjects with and without periodontitis. ISME J. 8, 1659–1672 (2014). 

43. Mason, O. U. et al. Metagenome, metatranscriptome and single-cell sequencing reveal 

microbial response to Deepwater Horizon oil spill. ISME J. 6, 1715–1727 (2012). 

44. Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-

analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 

12, e1004977 (2016). 



32 

45. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–

D212 (2015). 

46. Huang, K. et al. MetaRef: a pan-genomic database for comparative and community 

microbial genomics. Nucleic Acids Res. 42, D617–D624 (2014). 

47. Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method 

for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 

(2013). 

48. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 

26, 2460–2461 (2010). 

49. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 

9, 357–359 (2012). 

50. Ye, Y. & Doak, T. G. A parsimony approach to biological pathway reconstruction/inference 

for genomes and metagenomes. PLoS Comput. Biol. 5, e1000465 (2009). 

51. Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read 

simulator. Bioinformatics 28, 593–594 (2012).  



33 

 

Fig. 1.  HuMAnN2 functionally profiles microbial communities with high accuracy using tiered 
search. a, Overview of HUMAnN2’s tiered search algorithm for meta’omic functional profiling 
(expanded in Supplementary Fig. 1). b, HUMAnN2’s tiered search versus pure translated search 
evaluated on a synthetic gut metagenome. c,d, Sensitivity, precision, and overall accuracy (1 - 
Bray-Curtis dissimilarity) were computed for (c) gene family and (d) pathway abundance 
profiles relative to gold standards at the whole-community level (‘overall’) and for each 
stratification. e, HUMAnN2 compared with other methods in the task of quantifying community-
total COG abundances. Runtimes reflect multithreaded execution on 8 CPU cores.  
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Fig. 2.  Contributional diversity of core human microbiome pathways. a, Within- and between-
sample contributional diversity for core metabolic pathways (individual points) from HMP 
metagenomes. Stars indicate background species-level whole-community diversity. b–e, 
Examples of pathways with ‘extreme’ diversity patterns. The top of each set of stacked bars 
indicates the total stratified abundance of the pathway within a single sample (log-scaled). 
Species and ‘unclassified’ stratifications are linearly (proportionally) scaled within the total 
bar height.  
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Fig. 3.  Thermocline-associated microbial enzymes in the marine pelagic zone. a–e, Examples of 
KEGG Orthogroups (KOs) demonstrating strong temperature associations across 45 Red Sea 
metagenomes; all were newly quantified by HUMAnN2 relative to the samples’ initial 
publication. f, Pearson correlations for 4,609 KOs that were quantified by both HUMAnN2 and 
HUMAnN1. ‘GAIW’ indicates ‘Gulf of Aden Intermediate Water’, a cool nutrient-rich 
water mass within the Red Sea. The n = 45 total samples in f are subdivided by depth layers (the 
sample from 258 m was grouped with the 500-m samples) and colored by latitude. From smallest 
to largest, box plot elements represent the lower inner fence, first quartile, median, third quartile, 
and upper inner fence.  
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Fig. 4. Metatranscriptomic functional profiling and multi’omic data integration with 
HuMAnN2. a, Average within-sample metagenomic (DNA) versus metatranscriptomic (RNA) 
contributional diversities for n = 181 core pathways profiled from 78 paired inflammatory 
bowel disease (IBD) meta’omes from the IBDMDB cohort. Pathways are colored by ‘relative 
expression’ (RNA/DNA ratio). b, Sucrose degradation (outlined in a) is a prevalent pathway 
with high within-subject contributional diversity at the DNA level but low within-subject 
contributional diversity at the RNA level. This pattern was conserved across three IBD 
phenotypes: Crohn’s disease (CD), ulcerative colitis (UC), and non-IBD controls. Species’ 
contributions were rescaled to sum to 1 within each sample (set of stacked bars). 
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